LETTERS 2001 Vol. 3, No. 17 ²⁶²¹-**²⁶²⁴**

ORGANIC

Enantioselective Synthesis of Fluorinated r**-Amino Acids and Derivatives in Combination with Ring-Closing Metathesis: Intramolecular** *π***-Stacking Interactions as a Source of Stereocontrol**

Santos Fustero,* Antonio Navarro, Belén Pina, Juan García Soler, Ana Bartolomé, Amparo Asensio, Antonio Simón, Pierfrancesco Bravo, **Giovanni Fronza, Alessandro Volonterio, and Matteo Zanda**

Departamento de Quı´*mica Orga*´*nica, Facultad de Farmacia, Uni*V*ersidad de Valencia, E-46100 Burjassot (Valencia), Spain, and C.N.R.-Centro di Studio sulle Sostanze Organiche Naturali and Dipartimento di Chimica del Politecnico,* V*ia Mancinelli 7, I-20131 Milano, Italy*

*santos.fustero@u*V*.es*

Received May 9, 2001

ABSTRACT

Hydride reduction of C=N bonds stereocontrolled by intramolecular *π*-stacking interactions of 1-naphthylsulfinyl and *N*-aryl groups, nonoxidative **Pummerer rearrangement, and ring-closing metathesis are efficiently combined in a highly stereoselective entry to enantiomerically pure** cyclic and acyclic fluorinated β -amino alcohols and α -amino acid derivatives, respectively.

Attractive interactions between *π*-systems (*π*-stacking) play a key role in diverse phenomena, including stabilization of the helical structure of DNA, tertiary structures of proteins, and complexation in host-guest systems.¹ In asymmetric synthesis, π -stacking interactions are gaining increasing attention as a source of high stereoselectivity.² We now report a highly diastereoselective synthesis of cyclic and acyclic fluorinated α -amino acids and derivatives,³ where intramolecular *π*-stacking interactions involving *N*-aryl and

10.1021/ol016087q CCC: \$20.00 © 2001 American Chemical Society **Published on Web 07/25/2001**

1-naphthylsulfinyl groups were invoked to achieve stereocontrol with up to 98% de.

Fluorinated β -sulfinylamines **4**, available from enantiopure sulfinyl *N*-aryl imines (S) - Z -3 (Scheme 1),⁴ are suitable starting materials for the synthesis of fluorinated alaninols **6** and the corresponding alanines **7**. ⁵ The key issue allowing

^{(1) (}a) Hunter, C. A.; Sanders, J. K. M. *J. Am. Chem. Soc.* **1990**, *112*, ⁵⁵²⁵-5534 and references therein. (b) Doyon, J. B.; Jain, A. *Org. Lett.* **¹⁹⁹⁹**, *¹*, 183-185. (c) Edge-to-face aromatic interactions have also been invoked in many examples of molecular recognition. See, for example: Paliwal, S.; Greib, S.; Wilcox, C. S. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶*, 4497- 4498 and literature cited therein.

⁽²⁾ Jones, G. B.; Chapman, B. J. *Synthesis* **¹⁹⁹⁵**, 475-497.

⁽³⁾ For an overview of this field see: (a) *Fluorine-containing Amino Acids: Synthesis and Properties*; Kukhar, V. P., Soloshonok, V. A., Eds.; Wiley: Chichester, 1995. (b) *Enantiocontrolled Synthesis of Fluoro-organic Compounds*; Soloshonok, V. A., Ed.; Wiley: Chichester, 1999.

^{(4) (}a) Fustero, S.; Navarro, A.; Pina, B.; Asensio, A.; Bravo, P.; Crucianelli, M.; Volonterio, A.; Zanda, M. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 6210- 6219. (b) Bravo, P.; Cavicchio, G.; Crucianelli, M.; Markovsky, A. L.; Volonterio, A.; Zanda, M. *Synlett* **¹⁹⁹⁶**, 887-889.

⁽⁵⁾ Crucianelli, M.; Bravo, P.; Arnone, A.; Corradi, E.; Meille, S. V.; Zanda, M. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 2965-2971.

 a (a) Bu₄NBH₄, MeOH, -70 °C. (b) CAN, CH₃CN/H₂O, rt, (> 90%). (c) ClCO₂Bn, dioxane/aq K₂CO₃ 50%, rt, (75-99%). (d) (i) TFAA, CH₃CN, *sym*-collidine, $\hat{0}$ °C; (ii) K₂CO₃ (10%); (iii) NaBH₄, H₂O, (three steps, 70–90%). (e) RuO₂·xH₂O/NaIO₄, acetone/H₂O, $rt, (65-70\%)$.

this protocol to become synthetically useful was the development of a highly efficient hydride reduction of the $C=N$ bond of **3** to **4**. To this end, the influence of reaction conditions, sulfinyl residue Ar, and imine substituent $R¹$ on yields and diastereoselectivity was carefully investigated. Use of Bu4NBH4 ⁶ as reducing agent, pure methanol or THF/ methanol as solvent, and in general, low temperatures (-70) °C) provided the best diastereocontrol. In fact, nearly quantitative overall yields of **4a**-**^j** were obtained from **3aj**, with overwhelming predominance of the *syn*-diastereomers (dr ranging from 88:12 to 99:1) (Table 1). Apparently, the arylsulfinyl group exerts a significant influence on stereoselectivity, and the de follows the order: 1-naphthyl (entries 2 and 4) $>$ 2-naphthyl (entry 3) $> p$ -Tol (entry 1). To find some insights on the origin for the high *syn*-diastereoselectivity, ab initio molecular orbital (MO) and density functional

theory (DFT) calculations were carried out on representative β -iminosulfoxides (*R*)-3b,*c*, all of them in both *Z* and *E* imino configuration. This study brought two interesting features to light (Table 2). First, *Z* imino tautomers are predicted to

 a Energies in kcal mol⁻¹. *b* Single-point calculations using the HF/6-31G* geometry.

be more stable than those of the *E* configuration, regardless of the computational method used. Second, and most interestingly, calculations showed an almost parallel (faceto-face)^{1c} geometry between PMP and the 1-naphthyl rings of (*R*)-*Z*-**3b** with an interplanar separation of 3.9-4.2 Å (Figure 1), which strongly suggests the presence of an attractive $\pi-\pi$ interaction.

Theoretical predictions regarding the first point (geometry of **3**) are in full agreement with the spectroscopic data.4a Satisfactorily, also the π -stacking predictions found support

^a Reaction time 30 min except for entries 9 (168 h) and 10 (5 h); Bu4NBH4 as reducing agent and methanol as solvent. *^b* Isolated overall yields. *^c* Determined by 19F NMR of the crude reaction mixture. *^d* Similar results have been obtained starting from (*R*)-**3a** (entry 1), (*R*)-**3b** (entry 2), or (*R*)-**3c** (entry 3). *^e* THF/ MeOH as solvent. *^f* See Scheme 2.

by NMR studies (ROESY) performed on (*S*)-*Z*-**3b** at 195 K in CD_3OD , which are the optimized reaction conditions. NOE contacts among the four hydrogens of the PMP having nearly the same chemical shift in CD_3OD and all seven hydrogens of the 1-naphthyl ring were clearly detected. Moreover, the *p*-CH₃O group showed selective NOE with the H-5,6,7 of the naphthalene ring. Finally, the pro-*S* diastereotopic methylene hydrogen showed preferential contact with H-8 (*peri* to the substituent) of the 1-naphthyl, while the pro-*R* showed preferential contact with H-2 (*ortho*). These observations suggest that the molecule is arranged in a preferred conformation with the PMP and naphthyl rings close in the space. The face-to-face π -stacking model predicted by the calculations is in good agreement with the experimental NOE data. However, those data cannot exclude the occurrence of a different interaction, such as edge-to-face stacking, which would also bring at short distance some protons of the aromatic rings.

The stacking is likely to have a decisive influence on the stereochemical outcome of the $C=N$ bond reduction, because the *si* face for $R_F = CF_3$, CHF₂ and the *re* face for $R_F =$ $CCIF₂$ are exposed to the hydride attack, whereas the other diastereoface is efficiently shielded (Figure 1).

The calculated geometry for the 2-naphthyl derivative (*R*)- *Z***-3c** predicts a less effective $\pi-\pi$ interaction;^{7,8} in fact, formation of *syn*-**4c** occurred with lower diastereoselectivity (entry 3).

The influence of *N*-substituent $R¹$ was also investigated. A high degree of stereoselectivity was always obtained by replacing PMP with aromatic groups having different electron density, such as *o-*methoxyphenyl (**3f**, entry 6), *p*-fluorophenyl (**3g**, entry 7), and 1-naphthyl (**3h**, entry 8). This minor effect on diastereoselectivity and therefore on the stacking stability suggests that either van der Waals or electrostatic quadrupolar interactions^{7b} involving 1-naphthylsulfinyl and Ar rings could be responsible for the stacking, rather than a charge-transfer that should be very sensitive to the ring electron density. In addition, substitution of the *N*-aryl with a *N*-cyclohexyl group, which cannot give stacking, featured a dramatic drop of stereoselectivity (**3i**, entry 9).

With the enantiopure precursors *syn*-**4** in hand, we completed the synthesis of the target alaninols (R) - $6a - c$ and alanines (R) -**7a**- c^9 (Scheme 1). Replacement of the 1-naphthylsulfinyl auxiliary by a hydroxyl was accomplished by means of the "nonoxidative" Pummerer reaction (NOPR).⁵ To this end, the PMP groups of *syn-***4b,d,e** were cleaved oxidatively (CAN, 5 equiv), and then the amino groups were

(8) π -Stacking between aromatic rings in protic solvents have been described in the literature: (a) Kool, E. T.; Breslow, R. K. *J. Am. Chem. Soc.* **¹⁹⁸⁸**, *¹¹⁰*, 1596-1597. (b) Schumacher, D. P.; Clark, J. E.; Murphy, B. L.; Fisher, P. A. *J. Org. Chem.* **¹⁹⁹⁰**, *⁵⁵*, 5291-5294.

reprotected with ClCO₂Bn to afford syn-5b,d,e.¹⁰ Satisfactorily, the NOPR protocol afforded (R) - $6a - c$ in good to excellent yields. The final oxidation with $RuO_2^{\bullet}xH_2O/NaIO_4$ provided (R) -**7a**-**c** in fair yields.

This methodology has remarkable potential for the synthesis of enantiomerically pure fluorinated amino-derivatives. A new application combined with the ring-closing metathesis $(RCM)^{11,12}$ is demonstrated for the synthesis of the first enantiomerically pure fluorinated cyclic *â*-amino alcohol derivatives (**10**) featuring seven- and eight-membered rings (Scheme 2). 13

a (a) (i) (*S*)-**1a**, LDA (2.0 equiv), THF, -78 °C to rt, 6 h, (80%); (ii) Bu₄NBH₄, THF/MeOH, -70 °C to rt, 5 h, (>98%). (b), (c), and (d) As in Scheme 1 $[(R)-6d]$. (e) PhCO₂H, DCC, DMAP, CH₂Cl₂, rt, 7 h (95%). (f) Br(CH_{2)n}CH=CH₂, NaH, DMF, 0 °C $[9a \ (n = 1), 84\%; 9b \ (n = 2), 45\%; 9c \ (n = 3), 90\%]$. (g) $Cl_2(PC_{Y3})_2Ru=CHPh (3-10 \text{ mol } %)$, $CH_2Cl_2 (0.01-0.005 \text{ M})$, rt, $[(R)-10a \ (n = 1),75\%; (R)-10b \ (n = 2),87\%]$.

The strategy consists of the diastereoselective reduction of β -iminosulfoxide (*S*)-3*j* obtained by condensation reaction of the hitherto unknown imidoyl chloride **2j**14b and sulfoxide (*S*)-**1a**14a to afford *N*-PMP *â*-aminosulfoxide *syn*-**4j** (entry 10, Table 1 and Scheme 2).

^{(6) (}a) Taniguchi, M.; Fujii, H.; Oshima, K.; Utimoto, K. *Tetrahedron* **¹⁹⁹³**, *⁴⁹*, 11169-11182. (b) *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A. Ed.; Wiley: Chichester 1995; Vol. 7, pp 4722- 4724.

⁽⁷⁾ For related examples, see: (a) Sakuraba, H.; Ushiki, S. *Tetrahedron* Lett. 1990, 31, 5349-5352. (b) Heaton, N. J.; Bello, P.; Herradón, B.; del Campo, A.; Jime´nez-Barbero, J. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 9632-9645.

⁽⁹⁾ An efficient catalytic asymmetric synthesis of α -amino acids has been very recently described. See: Abe, H.; Amii, H.; Uneyama, K. *Org. Lett.* **²⁰⁰¹**, *³*, 313-315 and references therein.

⁽¹⁰⁾ The correct configuration assignments for these derivatives (*syn*-**4** or *syn*-**5**) was unambiguously obtained by X-ray crystallographic analyses. Because we were unable to obtain adequate single crystals for the major diastereoisomer of **4** or **5**, the relative stereochemistry of the new chiral created center was determined by comparison with the X-ray structure of the minor diastereoisomer *anti*-**5e** (R_F = CHF₂, Ar = 1-naphthyl, and R¹ $p - \text{MeOC}_6H_4$, which turns our to be $(2R, S_s)$ -**5e**. Full details of the X-ray structure of $(2R, S_S)$ -5e will be published in a full account of this work.

⁽¹¹⁾ RCM has emerged as a prominent reaction for the synthesis of medium- and large-sized rings from acyclic diene precursors. See, for example: (a) Grubbs, R. H.; Chang, S. *Tetrahedron* **¹⁹⁹⁸**, *⁵⁴*, 4413-4450. (b) Fu¨rstner, A. *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 3012-3043. (c) Morgan, J. P.; Grubbs, R. H. *Org. Lett.* **²⁰⁰⁰**, *²*, 3153-3155.

⁽¹²⁾ RCM has been used to prepare a variety of nitrogen-containing natural products including peptidomimetics: Phillips, A. J.; Abell, A. D. *Aldrichimica Acta* **¹⁹⁹⁹**, *³²*, 75-89.

⁽¹³⁾ For related systems, see: (a) Osipov, S. N.; Bruneau, Ch.; Picquet, M.; Kolomiets, A. F.; Dixneuf, P. H. *Chem. Commun.* **¹⁹⁹⁸**, 2053-2054. (b) Osipov, S. N.; Artyushin, O. I.; Kolomiets, A. F.; Bruneau, Ch.; Dixneuf, P. H. *Synlett* **²⁰⁰⁰**, 1031-1033.

Conversion into the *N*-Cbz derivative, followed by NOPR, and *O*-protection furnished compound (*R*)-**8**. *N*-Alkylation of (*R*)-**8** with different alkenyl bromides gave oxazolidinones (R) -**9a**-**c**,¹⁵ which in the presence of Grubb's catalyst (PC_{V}) -C₁-R₁₁=CHPh under high dilution conditions in dry $(PCy₃)₂Cl₂Ru=CHPh$ under high dilution conditions in dry dichloromethane gave the cyclized derivatives (*R*)-**10a,b** with good yields and high ee (>98%). The process works well for seven- $(n = 1)$ and eight- $(n = 2)$ membered rings, yet for nine-membered rings $(n = 3)$ dimerization and oligomerization products have been obtained instead.

Experiments are now underway to further exploit this strategy.

Acknowledgment. The authors thank Dirección General de Investigación Científica y Técnica (DGES PB97-0760-C02-01 and PPQ2000-0824), M.U.R.S.T. COFIN (Rome) and C.S.S.O.N. for financial support.

Supporting Information Available: Experimental procedures and analytical and spectroscopic data for compounds **2j** and **⁴**-**10**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016087Q

⁽¹⁴⁾ For the preparation of enantiopure sulfoxides **1** and imidoyl halides **2**, see: (a) Ferna´ndez, I.; Khiar, N.; Llera, J. M.; Alcudia, F. *J. Org. Chem.* **¹⁹⁹²**, *⁵⁷*, 6789-6796. (b) Uneyama, K.; Tamura, K.; Mizukami, H.; Maeda, K. *J. Org. Chem.* **¹⁹⁹³**, *⁵⁸*, 32-36.

⁽¹⁵⁾ Alternatively, (R) -9a- c can be directly obtained with slightly lower yields by treatment of β -amino alcohol (*R*)-6d ($R_F = CF_2CH_2CH=CH_2$) with NaH followed by *N*-alkylation of the previously isolated *N*-unsubstituted oxazolidinone.